多元函数凹凸性的判断方法(一元函数凹凸性的判断方法)

|2022/8/19 12:14:24|浏览:722|类型:生活

多元函数凹凸性的判断方法(一元函数凹凸性的判断方法)

1、函数凹凸性的判断方法的证明。

2、函数凹凸性的判断方法的原理。

3、函数凹凸性的判断方法二阶导数。

4、函数凸凹性判断的两种方法。

以下内容关于《

函数凹凸性的判断方法

》的解答。

1.设f(x)在区间D上连续,如果对D上任意两点a、b恒有f((a+b)/2)<。

2.(f(a)+f(b))/2,那么称f(x)在D上的图形是(向上)凹的(或凹弧)。

3.如果恒有f((a+b)/2)>。

4.(f(a)+f(b))/2,那么称f(x)在D上的图形是(向上)凸的(或凸弧)。

5.求凹凸性和拐点的步骤:求定义域。

6.求f(x)的二阶导(要写成乘积的形式)。

7.求f(x)的二阶导等于0的点和f(x)的二阶导不存在的点。

8.用上述点将定义域分成若干小区间,看每个小区间上f(x)的二阶导的符号,来判断他的凹凸性(大于零是凹函数,小于零是凸函数)。

9.若f(x)的二阶导在点x的两侧异号,则(x,f(x))是拐点,否则不是(也就是导图里提到的拐点的第一充分条件)。

总结:以上就是编辑:【西哈西哈】整理原创关于《

多元函数凹凸性的判断方法

》优质内容解答希望能帮到您。

首 页 上一页 1 下一页 尾 页 共1 条记录DevPager V1.0 Beta ! By 维诺工作室技术团队 CopyRight 版权所有 (C) WwW.Wy28.CoM 2008
参考网(cankaowang.com)备案号:豫ICP备13004982号-1 | 网站地图
参考网(cankaowang.com)站点内容若侵犯到您的权益请联系我们,我们将第一时间处理删除。 runfei999@163.com